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Abstract—Heat transfer in an absorbing and emitting nongray Boussinesq fluid within the annular gap of two
infinitely long isothermal horizontal concentric cylinders is studied analytically. The Miine-Eddington
approximation is employed in expressing the two-dimensional radiative transfer to include radial and
tangential radiation. Results indicate that decreasing Planck number, increasing the degree of nongrayness of
the fluid or increasing optical thickness increases the total heat transfer and reduces the induced buoyant flow
intensity and velocities. Decreasing boundary emissivity produces the opposite effect. Because radiation
decreases a fluid’s effective Prandtl number, increasing radiation causes adownward movement of the centre of
the eddy formed with medium Prandtl number fluids like air.

INTRODUCTION

Tue PROBLEM of heat transfer inside the annulus
between two horizontal cylinders in the presence of
convection and radiation represents an idealization of
many meaningful problems in engineering practice.
Some of these problems include solar heat collection
using concentrators, heat removal from gas-cooled fast
reactors, design of high-temperature heat exchangers
and heat removal from many electrical and electronic
equipments, amongst many others. Because of the
complexities involved in formulating and solving these
problems, it is common to neglect radiative effects and
consider only the relatively low-temperature-level
problems, hence solving only the natural convection
problem in cylindrical annuli. Experimental and
analytical simulations of these buoyancy-driven flows
have received a great deal of attention in the literature
[1-7]. These papers have studied the nature of the
induced convection currents which control the heat
transfer process. Results show that for both high- and
low-Prandtl-number fluids in an annulus there is a
critical Rayleigh number below which the convective
flow patterns are steady and laminar and above which
the flow patterns are unsteady and, in fact, oscillatory.
Powe et al. [3] also reported that for inverse relative
gap widths greater than about 2.8, stable secondary
cellular flows consisting of steady counter-rotating
eddy pairs occurred in the upper region of the annulus
for Rayleigh numbers slightly below critical. From a
heat transfer point of view, the Nusselt number
behaviour is of primary importance. The results of
Powe et al. [4] indicate a variation in the average
Nusselt number independent of the type of flow,
however, the local Nusselt number was found to be
higher at locations where secondary flow exists.

As has been indicated, the above-mentioned results
are for the low-temperature-level applications where
radiative effects are not significant or have been

neglected. Because of the high temperature levels
required in many modern technology systems, the need
arises to extend the problem discussed above to include
the radiative effects of the participating fluid as well as
of the boundaries. This requires writing the radia-
tive transfer equation for cylindrical geometry. The
literature on radiative transfer in non-Cartesian
geometry is fairly scanty. Some authors [8-11] have
expressed the cylindrical radiative transfer equation in
the form of an integro-differential equation which is
tedious to solve. Perlmutter and Howell [12] solved
the problem of radiant heat transfer through a gray
gas between concentric cylinders using the Monte-
Carlo method. This formulation, though accurate,
is computationally expensive because a large number
of probable paths of discrete energy bundles must be
constructed and followed in order to obtain statistically
meaningful results. A simple model based on the Milne—
Eddington approximation, which can be derived by the
method of moments or spherical harmonics has been
used [13-15] to describe thermal radiation in
cylindrical geometry. This permits the formulation of
the radiative transfer equation in terms of a differential
equation. These formulations have been proposed for
axially symmetric problems or one-dimensional
problems where tangential radiation is assumed
negligible when compared with radial radiation. In
problems where temperature is expected to vary in the
tangential direction, due to buoyancy, it may not be
convenient to a priori assume tangential radiation to be
small. However, the Milne-Eddington differential
approximation is easily amenable to a formulation
including tangential radiation. Additional advantages
of this approximation are that the weighted
nongrayness of the participating fluid as well as the
radiative colour of the boundaries are incorporated in
the formulation. Arpaci and Gozum {16] studied the
accuracy of this approximation by comparing its
results with those of the exact solution for a Cartesian
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B Planck function

C, specific heat at constant pressure

g acceleration due to gravity

I  frequency-averaged radiative intensity
J  dimensionless first moment of radiative
intensity

K thermal conductivity

local Nusselt number

average Nusselt number

P pressure

P! Planck number, o K/4oT*3

Pr  Prandtl number, v/k

radial radiative heat flux

qs tangential radiative heat flux

r  dimensionless radial position

R radius ratio, r¥/r¥

Ra Rayleigh number, gB(T* — T*)r}¥3/kv

T dimensionless temperature

T’ Temperature ratio of outer boundary to
inner boundary, T¥/T¥*

U dimensionless radial velocity

V  dimensionless tangential velocity.

Greek symbols
®c Chandrasekhar mean absorption
coefficient
or Einstein mean absorption coefficient
®, mean absorption coefficient, (apoig)'/?
op Planck mean absorption coefficient

NOMENCLATURE

og Rosseland mean absorption coefficient
B coefficient of thermal expansion

y  the azimuth angle of radiation ray

¢  hemispherical (diffuse) emissivity of the
boundary

degree of nongrayness of fluid (ap/og)**
angular position measured counter-
clockwise from the downward vertical
thermal diffusivity

dynamic viscosity

kinematic viscosity

fluid density

Stefan—Boltzman constant

optical thickness, o, r¥

angle between a radiation ray and the
radial direction

dimensionless streamfunction.

S
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Subscripts
i inner boundary
o outer boundary
ci convective quantity on the inner boundary
co convective quantity on the outer boundary
ri  radiative quantity on the inner boundary
ro radiative quantity on the outer boundary
A monochromatic quantity.

Superscripts
*  dimensional quantity.

geometrical problem. They found that the approxim-
ation gave adequate results for intermediate optical
thickness in addition to the known fact that it gives the
exact results for the thin gas case, T — 0, and for the
thick gas case, t — 0.

This paper deals with the problem of heat transfer
inside horizontal concentric cylinders in the presence of
radiation, buoyancy and conduction. The problem,
including the radiative transfer equation, is formulated
inatwo-dimensional cylindrical co-ordinate, the radial
and tangential directions. The effect of radiation on the
well-established streamline pattern, particularly on the
development of secondary cellular flows, if any, is
studied.

FORMULATION

Consider an absorbing and emitting nongray
Boussinesq fluid in the annular gap between two
infinitely long horizontal concentric cylinders. The
walls are isothermal with the inside wall maintained ata
temperature T and the outside wall maintained at a
lower temperature T¥. A cylindrical polar co-ordinates
system is taken with the angular position 6 measured
counter-clockwise from the downward vertical

through the centre and the radial distance r* measured
from the centre. The problem is symmetric about the
vertical diameter and so attention is confined to
the region bounded by 0 < 6 < I1. Neglecting the
contribution of radiative stress to the momentum
equations, we can express the continuity, radial

momentum, tangential momentum and energy
equations as
1 0 1 or*
— — (U +— =0 1
o U G M
U ou* + V* gUu*  V*? 0P
PU T a0 [T o

o {1 @ 1 *Ux 2 ove
—_— e (p*][]* — o
+”[ar* {r* o Y )}+r*2 ag7 ae]

+pg{1—B(T*~TH}cos0 (2)
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The energy equation (4) contains the radiative heat
fluxes in the radial and tangential directions, and these
will be evaluated using the method of moments coupled
with the assumption of local isotropy for radiative
intensity, which is the Milne-Eddington approxima-
tion. The resulting equations are identical to those
obtained as the P—1 approximation when radiative
intensity is expanded in a series of spherical harmonics.
The two-dimensional monochromatic photon balance
(radiative transfer equation) written in cylindrical r*
and 8 co-ordinates is

oI, i ol
cos =% + singcosy o _  Bim1)  (5)

r* a0

where cos ¢ is the radial component of the unit vector in
a ray direction, and sin¢cosy is the tangential
component of the same vector. The first moment of the
transfer equations is obtained by integrating equation
(5)overallsolid angles and frequencies and, if the black-
body radiation is related to temperature, one obtains

oqr 1 gy

ér_* r_* %‘ = 4IXPO'T*4* aEJ* (6)

where
=] 2n L3
ql‘:J~ j f I,sin¢pcosgpdpdydi (7)

5] 2n T
q,‘}:J j J‘I,lsin2¢cosyd¢dydl 8)

J o, B, dA
ap =" ©)
j B, di
(1]
oI, dA
oap =0 —— (10)

J 1,dA
0

© 2z (*n
J* =f f f 1, sin ¢ d¢ dy da.
0 0 0

The second radial moment of the transfer equation is
obtained by multiplying equation (5) by cos ¢ and
integrating over all solid angles and frequencies to get
0H 1 oL
or* r* 00

and

(1)

— R
= —0pq,

(12)

© 2r 'z
H=j J f I,cos? ¢singpdpdydi (13)
o Jo Jo

o *2z (*r
L=J j f I,sin? ¢ cos pcosydep dydd (14)
o Jo Jo

J aaqﬁ di
¥ (15)

J qr, dA
0

2n *n
@, =f J I, sin ¢ cos ¢ dop dA.
0 0

e =

and
(16)
Using the assumption of local isotropy, whichis that [,

isneither a function of ¢ nor of y,equations (11),(13) and
(14) are integrated to get

J* =4nl (17)
4

H=—1 (18)
3

L=0 (19)

where

sz I di
)

With local isotropy also, ax = ap and ae = ag where

LBy,
1 o % oT*

tg * 8B, )
da
L aT*

Equations (17) and (18) are now combined to give
H = J*/3 which is substituted into equation (12) to
get

1 aJ*

— R
Py = —O0gq,.

3 or* 20

The second tangential moment of the transfer equation
is obtained by multiplying equation (5) by sin ¢ cos y
and integrating over all solid angles and frequencies to
get

1 0G

iy —oRgs (21)
where
© 2n *n
G =J j j I, sin® ¢ cos? y d¢ dy dA
0 o] (4]
and for local isotropy,
4r J*
G=—1I=—
3 3
which when substituted into equation (21) gives
1 aJ*
3 0 — g5 (22)

Equations (20) and (21) are then substituted into the
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energy equation (4) to get

oT* V* oT*
* __ [,
PG {U or* + r* 96 }
1 ¢ oT 1 8*T*
_ . *
- K{r* or* (r 6r"‘)+r"‘2 00? }

1 oJ*

r* or*

1 o2 J*
+—3‘GR Wﬁ“

1 92J*

+ o _597} 23)
Using equations (20) and (22) in equation (6), the
integrated radiative transfer equation becomes
o*J* 1 oJ* 1 §2J*
Or¥? " rx or* ¥ 96?

—3opagJ* = — 120paga T**. (24)
Equations (1)}-(3),(23) and (24) constitute the governing
equations for the problem. If a streamfunction
consistent with equation (1) is defined by
1 oy oy*
T ar*

*

and V*= (25)
equations (2) and (3) can be combined by cross
differentiation to eliminate the pressure terms and the
resulting governing equations in dimensionless form
become

. 0T cos8 0T 1 V¥, y)
4.0 _ e il =AY ¥
V‘”‘R"(S‘“g a Ty ae) rPr 4, 0)
(26)
?
i LOEV) Mg @7

T r o6 Pl

V3 =33 =—7* <1_—1T—) {T'+(1-T)T}* (28)

where the following dimensionless variables have been
introduced

r* y* T*—T*

e Ve Temo
J*
Je=
26THTF—TY

The dimensionless velocities now become

1y oy
The Jacobian and Del operators are defined
symbolically as
ohg) 31 393 %
or,0) or 80 a0 or
ol 1o 12
or* rar  r? 062
V4= ViV?),

The dimensionless boundary conditions are readily
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determined as follows:

0
¢=—w=0 at r=1R
or
T=1 at r=1 and T=0 at r=R
for symmetry about 6 = 0, =,
oWy oT
=== t 6=0,nm
V=" 0 "

The corresponding radiative boundary conditions are
developed along similar lines as ref. [16] and these are

J=("/3XT)%+§U%_TT) at r=1
J=(r]/3x1:)a—J+—714— at r=R
or  3(1-T")
%=0 at 6=0,7
where
£
==

METHOD OF SOLUTION

A number of methods have been proposed for solving
the governing partial differential equations that result
when considering convection in enclosed fluids. Orzag
and Israeli [17] recommend the method of spectral
expansion using trigonometric functions when the
enclosure is cylindrical and symmetrical. This method
was tried first, however, for a three-term trigonometric
series, the solution of the resulting ordinary differential
equations using matrix inversion required much
computer storage and time, and convergence could not
be guaranteed even for medium value Rayleigh
numbers. Solution by perturbation techniques also
limits the range of applicability of any results obtained.
The direct finite-difference scheme was therefore
resorted to. One typical method of this scheme is to
first solve for the vorticity funcion, calculate the
streamfunction from the vorticity and then proceed to
solve temperature and radiative intensity equations.
This method was not adopted because of the
inaccuracies involved in expressing the vorticity
boundary conditions.

A numerical solution was obtained by approximat-
ing the derivatives of equations (26)28) by their
central difference equivalents, thereby transforming the
equations into coupled difference equations. The
simple Gauss—Siedel iterative method was then used to
obtain solutions for each equation. The nonlinearity of
the governing equations necessitates the use of another
iterative cycle before solutions can be obtained. The
order is to solve first for temperature, then for radiative
intensity and then for the streamfunction. This T—J
— cycle was continued until the sums of the absolute
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values of the deviations of T ;, J; ; and ¢, ; from their
previous values were each less than 1073. Once
satisfactory T,J and Y have been found, the
dimensionless radial and tangential velocities can then
be computed. Several other methods have been
proposed by de Vahl Davis [18] and Prakash and
Patankar [197 to ensure the stability and convergence
of the coupled difference equations at increased
Rayleigh numbers, but the simplicity of the Gauss—
Siedel method was preferred to thisslight increasein the
range of applicability.

For heat transfer calculations, local Nusselt numbers
made up of convective and radiative components were
defined at any annular position for the inner and outer
boundaries of the annulus. For the inner boundary, the
expression is

oT n oJ
=——— - at r=1 30
== " 27 (0)
and for the outer boundary,
or  n oJ
—R——— — t = R, 31
Ntq ar pPlar T 31

The first term on the RHS of each expression represents
convective Nusselt number while the second term is the
radiative Nusselt number. The average Nusselt number
at each boundary is obtained by numerically
integrating each expression over the angular domain of
0° to 180°.

Convergence and accuracy tests were carried out by
increasing the number of grid points, increasing the
number of iterations in the Gauss-Siedel solutions,
increasing the number of iterations in the T—J—y
cycle and evaluating the discrepancy between the
average Nusselt number of both boundaries. An
increased number of grid points and iterations were
necessary for convergence with higher values of Ra, n, t
and lower values of Pl. The streamfunction equation
was found to converge in all cases examined when
Ra(Ar)® < 1.0 while the temperature equation con-
verged when n12Ar/Pl < 1.0. Thirty-six grid spacingsin
the angular direction and 20in the radial direction were
found to be adequate for results presented; 250
iterations in the Gauss—Siedel loop were used for the
temperature equation, 400 iterations for the radiative
intensity equation and as much as 800 iterations were
required for the streamfunction equation. The
adequate number of T'—J —y iteration cycles varied
from 4 to 8 with the higher Ra and lower Pl cases
requiring more cycles. The discrepancy in the values of
the average Nusselt numbers on both boundaries arises
mainly from truncation errors encountered in the finite-
difference scheme [20], and so could be used as a
measure of the accuracy of the finite-difference method.
A fairly good agreement is observed except at high
radiation level cases of Pl = 0.01 where as much as 30
grid spacings in the radial direction did not resolve the
discrepancy.
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NUMERICAL RESULTS AND CONCLUSIONS

Numerical results presented are for a gaseous fluid
medium, which is more susceptible to radiation effects,
and the Prandtl number is taken as 0.7. To lessen the
number of numerical calculations, only one tempera-
ture ratio, T’ = 0.2 was considered. The values of
radiation parameters employed arein the range known
to be reasonable for gases [16]. Thermal radiation
effects on heat transfer, temperature, velocities and
streamfunctions were evaluated for Rayleigh numbers
slightly below and slightly above the transition values
given by Powe et al. [4].

The heat transfer information is summarized in
Table 1 and gives the calculated average convective,
radiative and total Nusselt number on both the inner
and outer boundaries of the annulus as well as the
extreme values of velocities and streamfunctions
attained for stated conditions. The results show that
radiation does significantly affect heat transfer inside a
cylindrical annulus. For a fixed Rayleigh number and
radius ratio, increasing 7 or n as well as decreasing P/
(increasing radiation parameters) results in a decrease
of the average convective Nusselt number and an
increase of the average radiative Nusselt number on the
inner boundary of the annulus. The increase in the
radiative Nusselt number predominates over the slight
decrease in convective Nusselt number giving rise to an
increase of the average total Nusselt number. On the
outer boundary, because of the lower temperature level,
radiative increases of the average radiative Nusselt
number is less than on the inside. Unlike the inside,
radiation increases the average convective Nusselt
number in order to keep the average total Nusselt
number the same on both boundaries. Hence with an
emitting, absorbing fluid at a high temperature,
radiative transfer is the dominant heat transfer
mechanism on the inner boundary of the annulus while
convection becomes an important heat transfer
mechanism on the outer boundary. The other radiation
parameter, surface emissivity, on being decreased,
increases the average convective Nusselt number on the
inside while decreasing it on the outside. For the
limiting case when surface emissivity is zero, that is the
case of mirror boundaries, there is no radiative transfer
at the boundaries and so the average total Nusselt
number is less than that for the case of black
boundaries, even on the inside where reduced surface
emissivity increases the convective Nusselt number.
From the tabulated values of the average total Nusselt
numbers, it is evident that for maximum heat extraction
from a hot inner cylinder to a cold outer cylinder, one
would need to employ a highly emitting and absorbing
fluid coupled with high emissivity boundaries. It is
interesting to note that the average radiative Nusselt
number is almost independent of Rayleigh number and
radius ratio. Figures 1 and 2 respectively show
radiative effects on local radiative and convective
Nusselt numbers around the annulus boundaries. On
the inside, convective and radiative transfers are
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=3 F1G. 1. Radiative effects on radiative heat transfer.
S
o
o™
5 X maximum when 8 = 0° while on the outside both are
2 2 maximum when 6= 180°. The curves for the
= a convective Nusselt number on the inside show that
radiation diminishes the angular dependent of local
<1 & convective Nusselt number while not significantly
& g affecting the local convective Nusselt number on the
= g outside except by uniformly increasing the convective
level.
5 Table 1 also shows the effect of radiation, Rayleigh
Q number and radius ratio on the maximum value of the
« streamfunctions and velocities in the buoyancy-
o o induced flow. The maximum value of the streamfunc-
Q 2 tion is important in the flow because it is indicative of
< < the flow intensity while also representing the centre of
the eddy formation. The table shows that increasing t,
= 2 or n or decreasing Pl decreases the intensity of flow
while decreased boundary emmissivity increases flow
= 2 intensity. In most cases the maximum streamfunction
occurred at § = 90° and midway across the gap except
o o for the high Rayleigh number, high radiation cases. In
- - these cases, when P! =0.01, Ra=6x10% R = 1.2,
1= 1.0,e = 1.0, and # = 1 or 2, the maximum stream
= = function occurred at 85° indicating a downward
< = movement of the centre of the eddy. As noted by ref, [ 5],
this is a characteristic of low-Prandtl-number fluids. It
= S is known from ref. [16] and [21] that radiation reduces
= 3 the effective Prandt] number of fluids and in the thick
gas range the reduction is by a factor of [1+ (4%/3P])].
o ! Another consequence of this reduction in effective
Prandtl number is manifest in the streamline patterns
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180

(notshown here for brevity) which indicate that the heat
transport is dominated by conduction.

The velocity plots are shown in Figs. 3-6 and the
trends are consistent with those presented in ref. [4].
The tangential velocity plots exhibit sinusoidal-type
behaviour. On the upper half of the annulus, the
amplitude of the positive part of the tangential velocity
sinusoid is less than the amplitude of the negative part
and the reverse is the case on the bottom half. For the
case of no radiation and Ra = 6 x 10°, R = 1.2, the
crossover point is at § = 100°. However, for the same
Rayleigh number and radius ratio but with Pl = 0.01,
t© = 1.0, = 1, the crossover point is at § = 65° while for
Pl =10, 1 =100, n =1, the crossover point is at
0 = 85°. Hence radiation does reduce this crossover
angle. The radial velocity plots for their part exhibit a
maximum or a minimum depending on the angle. The
radial velocity is positive and has a maximum on the
upper half while it is negative and so has a minimum on
the bottom half. The minimum values occurred around
0 =10° and maximum values occurred around
08 = 170°. The higher of the absolute values of the
maximum and minimum, as well as location are shown
also in Table 1. Powe et al. [4] observed secondary
flows at the top of the cylinder for a Rayleigh number of
4.5 x 10° and radius ratio of 1.2. In this study, even at a
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higher value of Rayleigh number, 6 x 10°, and the
same radius ratio there was no evidence of the presence
of secondary flow.

For the numerical tests carried out, the maximum
value of the ratio of tangential radiative flux to radial
radiative flux is 3.5% occurring at an angular position
of 85° for the cases where Pl =0.01. Since this
percentage is small, the plots for g,/gg are not presented,
however, it is expected that the ratio will increase for
higher values of R and Ra.

The temperature curves give a fair insight into the
behaviour of the convective Nusselt number because
this quantity, as defined, is proportional to the
temperature gradient at the boundaries. Typical
temperature plots are given in Figs. 7 and 8
representing temperature profiles for angular positions
of 30° and 120°. Figure 7 shows the effects of the Planck
number and optical thickness, while Fig. 8 shows the
effects of the degree of nongrayness of the fluid and the
boundary surface emissivity. Increasing radiation by
decreasing Pl,increasing 7, or increasing n, will decrease
the temperature gradient on the inner boundary while

increasing the temperature gradient on the outer
boundary. Decreasing boundary emissivity produces
the opposite effect. These figures also indicate that
radiation tends to smooth the temperature gradient of
the bulk of the fluid hence reducing the effective
buoyancy forces. This results in a decrease of the fluid
motion which is due to buoyancy.
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TRANSFERT THERMIQUE DANS UN ESPACE ANNULAIRE HORIZONTAL EN
PRESENCE DE RAYONNEMENT THERMIQUE ET DE GRAVITE

Résumé—On étudie analytiquement le transfert thermique dans un fluide de Boussinesq non gris, absorbant et
émettant a I'intérieur d’un espace annulaire entre deux cylindres concentriques, horizontaux, isothermes et
infiniment longs. On emploie 'approximation de Milne-Eddington pour exprimer le transfert radiatif
bidimensionnel en incluant le rayonnement radial et tengentiel. Les résultats montrent que la décroissance du
nombre de Planck, 'accroissement du degré de non grisaille du fluide ou I'augmentation de’épaisseur optique,
accroit le transfert thermique total et réduit I'intensité de 'écoulement naturel induit et les vitesses. Une
décroissance de I’émissivité des frontiéres produit I'effet inverse. Parce que le rayonnement décroit le nombre
de Prandtl effectif d’un fluide, 'augmentation du rayonnement provoque un mouvement descendant du centre
du tourbillon formé dans le case des fluides & nombre de Prandtl moyen comme Iair.

WARMEUBERTRAGUNG IN EINEM HORIZONTALEN RINGRAUM DURCH
NATURLICHE KONVEKTION UND STRAHLUNG

Zusammenfassung—Der Wirmeilibergang im Ringraum zwischen zwei unendlich langen, horizontalen
Zylindern mit einheitlicher Temperatur wird analytisch untersucht. Der Ringraum ist mit einem nichtgrauen

(beziiglich Absorption und Emission)

Boussinesq-Fluid  gefiillt.

Um die zweidimensionale

Wirmeiibertragung durch Strahlung, radial und tangential, auszudriicken, wird die Milne-Eddington-

Niherung verwendet. Die Ergebnisse zeigen, daB mit abnehmender Planck-Zahl, zunchmender Transparenz

des Fluids oder zunehmender optischer Schichtdicke der Warmeiibergang besser und die Intensitét der

Konvektionsstromungen geringer werden. Verringerte Emissivitdt der Oberflichen hat den gegenteiligen

Effekt. Da die Strahlung die effek tive Prandtl-Zahl des Fluids verringert, bewirkt eine Zunahme der Strahlung

eine abwirts gerichtete Bewegung der Mitte von Wirbeln, wie sie bei Fluiden mit mittlerer Prandtl-Zahl, z. B.
Luft, gebildet werden.
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TEIJIONEPEHOC BHYTPHU I'OPU3OHTAJIBHOI'O KOJBIIEBOIO KAHAJIA C YYETOM
TEMJIOBOI'C M3JYYEHUS U MOALEMHON CUJIbI

AHHOTAUHS—AHAJIMTHYECKH H3Y4YaeTCs TEIUIONEPEHOC B MOIJIOWANOILEH 1 H3JiyYatomel Hecepol cpene
ByccuHecka B KOJIBLEBOM 3a30p€ IBYX OECKOHEYHO [UIMHHBIX TOPH30HTAJIbHBIX KOHLEHTPHYECKHX
uMAMHAOpOB. Ins onmMcaHus ABYMEPHOTO PaAHaUHOHHOIO MEPEHOCA C Y4€TOM pajHajbHON M TaHIeH-
IIMaIbHOM COCTaB/IAIOLIMX M3JY4YeHHs MpUMEHsAeTCa npubanmxeHue MunHa-Dpgunrrona. PesynbraTel
NOKAa3bIBAIOT, YTO yMeHblileHHe yuciia [IpaHATAsA, YBeIHYEHHE CTENIEHH HECEPOCTH CPE/lbl MJIH BO3pacTa-
HHE ONTHYECKON TOJILMHBl YBEIMYMBAIOT CYMMADHBIH TEIUTONEPEHOC H YMEHBLIAKOT MHTEHCHBHOCTH
Te4YeHHs, BbI3BAHHOTO NOXBLEMHON CHJIOH, M CKOpPOCTb. YMeEHbILUEHHE H3/ydaTenbHO#H cnocobHocTH
rpanuubl naet obparhslit a¢dekt. [Tockobky ninyyeHue yMesbiuaeT ddoexTuBHOe uucno ITpanatis
KUAKOCTH, YCHJICHHE H3JIyMeHHS NPHBOAMT K HAmpaBJICHHOMY BHH3 IBHXEHMIO LEHTpa BHXps, 06paso-
BaHHOTO B cpelie ¢ Yucnom IIpaHaTis kak y Bo3myxa.
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