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Abstract-Heat transfer in an absorbing and emitting nongray Boussinesq fluid within the annular gap of two 
infinitely long isothermal horizontal concentric cylinders is studied analytically. The Milne-Eddington 
approximation is employed in expressing the two-dimensional radiative transfer to include radial and 
tangential radiation. Results indicate that decreasing Planck number, increasing the degree ofnongrayness of 
the fluid or increasing optical thickness increases the total heat transfer and reduces the induced buoyant flow 
intensity and velocities. Decreasing boundary emissivity produces the opposite effect. Because radiation 
decreases a fluid’s effective Prandtl number, increasing radiation causes adownward movement of the centre of 

the eddy formed with medium Prandtl number fluids like air. 

INTRODUCTION 

THE PROBLEM of heat transfer inside the annulus 
between two horizontal cylinders in the presence of 
convection and radiation represents an idealization of 
many meaningful problems in engineering practice. 
Some of these problems include solar heat collection 
using concentrators, heat removal from gas-cooled fast 
reactors, design of high-temperature heat exchangers 
and heat removal from many electrical and electronic 
equipments, amongst many others. Because of the 
complexities involved in formulating and solving these 
problems, it is common to neglect radiative effects and 
consider only the relatively low-temperature-level 
problems, hence solving only the natural convection 
problem in cylindrical annuli. Experimental and 
analytical simulations of these buoyancy-driven flows 
have received a great deal of attention in the literature 
[l-7]. These papers have studied the nature of the 
induced convection currents which control the heat 
transfer process. Results show that for both high- and 
low-Prandtl-number fluids in an annulus there is a 
critical Rayleigh number below which the convective 
flow patterns are steady and laminar and above which 
the flow patterns are unsteady and, in fact, oscillatory. 
Powe et al. [3] also reported that for inverse relative 
gap widths greater than about 2.8, stable secondary 
cellular flows consisting of steady counter-rotating 
eddy pairs occurred in the upper region of the annulus 
for Rayleigh numbers slightly below critical. From a 
heat transfer point of view, the Nusselt number 
behaviour is of primary importance. The results of 
Powe et al. [4] indicate a variation in the average 
Nusselt number independent of the type of flow, 
however, the local Nusselt number was found to be 
higher at locations where secondary flow exists. 

As has been indicated, the above-mentioned results 
are for the low-temperature-level applications where 
radiative effects are not significant or have been 

neglected. Because of the high temperature levels 
required in many modern technology systems, the need 
arises to extend the problem discussed above to include 
the radiative effects of the participating fluid as well as 
of the boundaries. This requires writing the radia- 
tive transfer equation for cylindrical geometry. The 
literature on radiative transfer in non-Cartesian 
geometry is fairly scanty. Some authors [S-11] have 
expressed the cylindrical radiative transfer equation in 
the form of an integro-differential equation which is 
tedious to solve. Perlmutter and Howell [12] solved 
the problem of radiant heat transfer through a gray 
gas between concentric cylinders using the Monte- 
Carlo method. This formulation, though accurate, 
is computationally expensive because a large number 
of probable paths of discrete energy bundles must be 
constructed and followed in order to obtain statistically 
meaningful results. A simple model based on the Milne- 
Eddington approximation, which can be derived by the 
method of moments or spherical harmonics has been 
used [13-151 to describe thermal radiation in 
cylindrical geometry. This permits the formulation of 
the radiative transfer equation in terms of a differential 
equation. These formulations have been proposed for 
axially symmetric problems or one-dimensional 
problems where tangential radiation is assumed 
negligible when compared with radial radiation. In 
problems where temperature is expected to vary in the 
tangential direction, due to buoyancy, it may not be 
convenient to apriori assume tangential radiation to be 
small. However, the Milne-Eddington differential 
approximation is easily amenable to a formulation 
including tangential radiation. Additional advantages 
of this approximation are that the weighted 
nongrayness of the participating fluid as well as the 
radiative colour of the boundaries are incorporated in 
the formulation. Arpaci and Gozum [16] studied the 
accuracy of this approximation by comparing its 
results with those of the exact solution for a Cartesian 
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NOMENCLATURE 
Planck function 
specific heat at constant pressure 
acceleration due to gravity 
frequency-averaged radiative intensity 
dimensionless first moment of radiative 
intensity 
thermal conductivity 
local Nusselt number 

average Nusselt number 
pressure 
Planck number, u,K/4aTT3 
Prandtl number, V/K 

radial radiative heat flux 
tangential radiative heat flux 
dimensionless radial position 
radius ratio, r,*/r: 
Rayleigh number, g/3( TT - T,*)rF3/kv 
dimensionless temperature 
Temperature ratio of outer boundary to 
inner boundary, T,*/TT 
dimensionless radial velocity 
dimensionless tangential velocity. 

symbols 
Chandrasekhar mean absorption 
coefficient 
Einstein mean absorption coefficient 
mean absorption coefficient, (~,cz,$‘~ 
Planck mean absorption coefficient 

Rosseland mean absorption coefficient 
coefficient of thermal expansion 
the azimuth angle of radiation ray 
hemispherical (diffuse) emissivity of the 
boundary 
degree of nongrayness of fluid (ap/a#’ 
angular position measured counter- 
clockwise from the downward vertical 
thermal diffusivity 
dynamic viscosity 
kinematic viscosity 
fluid density 
Stefan-Boltzman constant 
optical thickness, LX, r: 
angle between a radiation ray and the 
radial direction 
dimensionless streamfunction. 

Subscripts 
i inner boundary 
0 outer boundary 
ci convective quantity on the inner boundary 
co convective quantity on the outer boundary 
ri radiative quantity on the inner boundary 
ro radiative quantity on the outer boundary 
1 monochromatic quantity. 

Superscripts 
* dimensional quantity. 

geometrical problem. They found that the approxim- 
ation gave adequate results for intermediate optical 
thickness in addition to the known fact that it gives the 
exact results for the thin gas case, z --) 0, and for the 
thick gas case, T -+ co. 

This paper deals with the problem of heat transfer 
inside horizontal concentric cylinders in the presence of 
radiation, buoyancy and conduction. The problem, 
including the radiative transfer equation, is formulated 
in a two-dimensional cylindrical co-ordinate, the radial 
and tangential directions. The effect of radiation on the 
well-established streamline pattern, particularly on the 
development of secondary cellular flows, if any, is 
studied. 

FORMULATION 

Consider an absorbing and emitting nongray 
Boussinesq fluid in the annular gap between two 
infinitely long horizontal concentric cylinders. The 
walls are isothermal with the inside wall maintained at a 
temperature TF and the outside wall maintained at a 
lower temperature T,*. A cylindrical polar co-ordinates 
system is taken with the angular position f3 measured 
counter-clockwise from the downward vertical 

through the centre and the radial distance r* measured 
from the centre. The problem is symmetric about the 
vertical diameter and so attention is confined to 
the region bounded by 0 < 0 < II. Neglecting the 
contribution of radiative stress to the momentum 
equations, we can express the continuity, radial 
momentum, tangential momentum and energy 
equations as 

a 

[ 1 I a 1 1 a*u* 
r*ar*(r*U*) +I*2 a02 

2 av* 
+p ar* 

--___ 
r** a8 1 

+pg{l-_P(T*--T,*)}cose (2) 

-pg{l-_P(T*-T,*)}sin0 (3) 
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,,,{,*~+~~}=K{~~(r~~) 
1 a*T* 

+ y*2 802 
-}--f-$*q:)-;!$ (4) 

The energy equation (4) contains the radiative heat 
fluxes in the radial and tangential directions, and these 
will be evaluated using the method ofmoments coupled 
with the assumption of local isotropy for radiative 
intensity, which is the Milne-Eddington approxima- 
tion. The resulting equations are identical to those 
obtained as the P-l approximation when radiative 
intensity is expanded in a series of spherical harmonics. 
The two-dimensional monochromatic photon balance 
(radiative transfer equation) written in cylindrical r* 

and Q co-ordinates is 

cm 4 ar* + 
sin C#J cos y az, 

r* 
- = cr,(B, - I,) 
ae 

(5) 

where cos 4 is the radial component ofthe unit vector in 
a ray direction, and sin C#J cosy is the tangential 
component of the same vector. The first moment of the 
transfer equations is obtained by integrating equation 
(5) over all solid angles and frequencies and, if the black- 
body radiation is related to temperature, one obtains 

89: 1 ad 
F + F ae = 40+aT*~ - cc,J* 

where 

qp= m 

2% x 

sss 
I, sin 4 cos 4 d$ dy dl 

0 0 0 
m 2n II 

4; = sss I, sin2 4 cos y d4 dy dl 
0 0 0 

s m 

a$, dl 
0 

up = 

s 

cc 

BA dd 
0 

CiE = 
s 

m 

aAl, dl 
0 

s 

m 

II dl 
0 

and 

Cc 2% I 

J* = 

sss 
I, sin 4 d4 dy dl. 

0 0 0 

I, sin2 4 cos C#J cos y d$ dy d3, (14) 

s 

CC 

u,q:: dl 
t(c= O 

s 

cc (15) 

4: dl 
0 

and 

2n n 

45 = Sf I, sin I$ cos C#J d4 dl. (16) 
0 0 

Using the assumption oflocal isotropy, which is that II 
is neither a function of 4 nor of y, equations (1 l), (13) and 
(14) are integrated to get 

J* = 4nZ (17) 

H+Z (18) 

L=O (19) 

f 

m 

z= I, dl. 
0 

With local isotropy also, c+ = aP and ac = ccR where 

(6) 

(7) 
Equations (17) and (18) are now combined to give 

(8) 
H = J*/3 which is substituted into equation (12) to 

get 

(9) 
The second tangential moment of the transfer equation 
is obtained by multiplying equation (5) by sin 4 cos y 
and integrating over all solid angles and frequencies to 

get 

(10) 1 ac 

r* 138 
= - wit 

where 

m 2n II 

G= 
(11) sss 

I, sin3 4 cos’ y d4 dy dL 
0 0 0 

,. . and for local isotropy, 
The second radial moment of the transfer equation IS 
obtained by multiplying equation (5) by cos 4 and 
integrating over all solid angles and frequencies to get 

G=fZ=; 

(21) 

aH i aL 
~+r*~=-%fZ: (12) 

which when substituted into equation (21) gives 

1 aJ* --=- 
m 277 'II 3r* ae 

%&. (22) 

H= 
sss 

I, cos2 4 sin 4 d+ dy dl, (13) 
0 0 0 Equations (20) and (21) are then substituted into the 
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energy equation (4) to get 

pc, u*g+;g 
{ i 

(23) 

Using equations (20) and (22) in equation (6), the 
integrated radiative transfer equation becomes 

a25* 1 aJ* 1 a2J* 

-+r*ar*+-7 
ar*2 r*’ a9 

- 3cc,cc,J* = - 12~,a,aT*~. (24) 

Equations (lH3), (23) and (24) constitute the governing 
equations for the problem. If a streamfunction 
consistent with equation (1) is defined by 

equations (2) and (3) can be combined by cross 
differentiation to eliminate the pressure terms and the 
resulting governing equations in dimensionless form 
become 

aT c0seaT 
sinear+-- + 1 a(V% +) ~ 

r ae rPr a(r, 0) 

(26) 

,2,z!a(T’) ’ V2J ___-- 

r a(r, 0) Pl 
(27) 

V2J-3r2J = -_t2 {T’+(1-T’)T}4 (28) 

where the following dimensionless variables have been 
introduced 

J* 

J = 12aTF3(Tt - T,*)’ 

The dimensionless velocities now become 

The Jacobian and Del operators are defined 
symbolically as 

au 9) af ag af ag -- 
a(r, 8) - dr % - Z 5 

v4= V2(V2). 

The dimensionless boundary conditions are readily 

determined as follows : 

*=z=O at r=l,R 

T=l at r=l and T=O at r=R 

for symmetry about 13 = 0, K, 

$=g=g=O at e=o,n. 

The corresponding radiative boundary conditions are 
developed along similar lines as ref. [ 163 and these are 

1 
J = (?//3xz) aJ + ____ 

ar 3(1-T’) 
at r=l 

T’4 
J = (q/3x?) g + ___ 

ar 3(1-T’) at ‘= R 

g=o at e=o,n 

where 

E 

x=2(2-E). 

METHOD OF SOLUTION 

A number of methods have been proposed for solving 
the governing partial differential equations that result 
when considering convection in enclosed fluids. Orzag 
and Israeli [17] recommend the method of spectral 
expansion using trigonometric functions when the 
enclosure is cylindrical and symmetrical. This method 
was tried first, however, for a three-term trigonometric 
series, the solution of the resulting ordinary differential 
equations using matrix inversion required much 
computer storage and time, and convergence could not 
be guaranteed even for medium value Rayleigh 
numbers. Solution by perturbation techniques also 
limits the range of applicability of any results obtained. 
The direct finite-difference scheme was therefore 
resorted to. One typical method of this scheme is to 
first solve for the vorticity funcion, calculate the 
streamfunction from the vorticity and then proceed to 
solve temperature and radiative intensity equations. 
This method was not adopted because of the 
inaccuracies involved in expressing the vorticity 
boundary conditions. 

A numerical solution was obtained by approximat- 
ing the derivatives of equations (26H28) by their 
centraldifference equivalents, thereby transforming the 
equations into coupled difference equations. The 
simple Gauss-Siedel iterative method was then used to 
obtain solutions for each equation. The nonlinearity of 
the governing equations necessitates the use of another 
iterative cycle before solutions can be obtained. The 
order is to solve first for temperature, then for radiative 
intensity and then for the streamfunction. This T-J 
- t+Q cycle was continued until the sums of the absolute 
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values of the deviations of T, jr Ji, j and til, j from their 
previous values were each less than 10s3. Once 
satisfactory 7: J and I(/ have been found, the 
dimensionless radial and tangential velocities can then 
be computed. Several other methods have been 
proposed by de Vahl Davis [18] and Prakash and 
Patankar [19] to ensure the stability and convergence 
of the coupled difference equations at increased 
Rayleigh numbers, but the simplicity of the Gauss- 
Siedel method was preferred to thisslight increasein the 
range of applicability. 

For heat transfer calculations, local Nusselt numbers 
made up of convective and radiative components were 
defined at any annular position for the inner and outer 
boundaries of the annulus. For the inner boundary, the 
expression is 

hJui=-g-sg at r=l (30) 

and for the outer boundary, 

IV~,=-R~-~~ at r=R. (31) 

The first term on the RHS ofeach expression represents 
convective Nusselt number while the second term is the 
radiative Nusselt number. The average Nusselt number 
at each boundary is obtained by numerically 
integrating each expression over the angular domain of 
0” to 180”. 

Convergence and accuracy tests were carried out by 
increasing the number of grid points, increasing the 
number of iterations in the Gauss-Siedel solutions, 
increasing the number of iterations in the T- J-t,b 
cycle and evaluating the discrepancy between the 
average Nusselt number of both boundaries. An 
increased number of grid points and iterations were 
necessary for convergence with higher values of Ra, q, T 
and lower values of Pl. The streamfunction equation 
was found to converge in all cases examined when 
Ra(Ar)3 < 1.0 while the temperature equation con- 
verged when ?z'ArjPl < 1 .O. Thirty-six grid spacings in 
the angular direction and 20in the radial direction were 
found to be adequate for results presented; 250 
iterations in the Gauss-Siedel loop were used for the 
temperature equation, 400 iterations for the radiative 
intensity equation and as much as 800 iterations were 
required for the streamfunction equation. The 
adequate number of T-J - JI iteration cycles varied 
from 4 to 8 with the higher Ra and lower PI cases 
requiring more cycles. The discrepancy in the values of 
the average Nusselt numbers on both boundaries arises 
mainly from truncationerrors encounteredin thefinite- 
difference scheme [20], and so could be used as a 
measure of the accuracy of the finite-difference method. 
A fairly good agreement is observed except at high 
radiation level cases of PI = 0.01 where as much as 30 
grid spacings in the radial direction did not resolve the 
discrepancy. 

NUMERICAL RESULTS AND CONCLUSIONS 

Numerical results presented are for a gaseous fluid 
medium, which is more susceptible to radiation effects, 
and the Prandtl number is taken as 0.7. To lessen the 
number of numerical calculations, only one tempera- 
ture ratio, T’ = 0.2 was considered. The values of 
radiation parameters employed are in the range known 
to be reasonable for gases [16]. Thermal radiation 
effects on heat transfer, temperature, velocities and 
streamfunctions were evaluated for Rayleigh numbers 
slightly below and slightly above the transition values 
given by Powe et al. [4]. 

The heat transfer information is summarized in 
Table 1 and gives the calculated average convective, 
radiative and total Nusselt number on both the inner 
and outer boundaries of the annulus as well as the 
extreme values of velocities and streamfunctions 
attained for stated conditions. The results show that 
radiation does significantly affect heat transfer inside a 
cylindrical annulus. For a fixed Rayleigh number and 
radius ratio, increasing z or 9 as well as decreasing PI 
(increasing radiation parameters) results in a decrease 
of the average convective Nusselt number and an 
increase ofthe average radiative Nusselt number on the 
inner boundary of the annulus. The increase in the 
radiative Nusselt number predominates over the slight 
decrease in convective Nusselt number giving rise to an 
increase of the average total Nusselt number. On the 
outer boundary, because ofthelower temperaturelevel, 
radiative increases of the average radiative Nusselt 
number is less than on the inside. Unlike the inside, 
radiation increases the average convective Nusselt 
number in order to keep the average total Nusselt 
number the same on both boundaries. Hence with an 
emitting, absorbing fluid at a high temperature, 
radiative transfer is the dominant heat transfer 
mechanism on the inner boundary of the annulus while 
convection becomes an important heat transfer 
mechanism on the outer boundary. The other radiation 
parameter, surface emissivity, on being decreased, 
increases the average convective Nusselt number on the 
inside while decreasing it on the outside. For the 
limiting case when surface emissivity is zero, that is the 
case of mirror boundaries, there is no radiative transfer 
at the boundaries and so the average total Nusselt 
number is less than that for the case of black 
boundaries, even on the inside where reduced surface 
emissivity increases the convective Nusselt number. 
From the tabulated values of the average total Nusselt 
numbers,it is evident that for maximum heat extraction 
from a hot inner cylinder to a cold outer cylinder, one 
would need to employ a highly emitting and absorbing 
fluid coupled with high emissivity boundaries. It is 
interesting to note that the average radiative Nusselt 
number is almost independent of Rayleigh number and 
radius ratio. Figures 1 and 2 respectively show 
radiative effects on local radiative and convective 
Nusselt numbers around the annulus boundaries. On 
the inside, convective and radiative transfers are 
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FIG. 1. Radiative effects on radiative heat transfer. 

maximum when 0 = 0” while on the outside both are 
maximum when f3 = 180”. The curves for the 
convective Nusselt number on the inside show that 
radiation diminishes the angular dependent of local 
convective Nusselt number while not significantly 
affecting the local convective Nusselt number on the 
outside except by uniformly increasing the convective 
level. 

Table 1 also shows the effect of radiation, Rayleigh 

number and radius ratio on the maximum value of the 
streamfunctions and velocities in the buoyancy- 
induced flow. The maximum value of the streamfunc- 
tion is important in the flow because it is indicative of 
the flow intensity while also representing the centre of 
the eddy formation. The table shows that increasing r, 
or n or decreasing PI decreases the intensity of flow 
while decreased boundary emmissivity increases flow 
intensity. In most cases the maximum streamfunction 
occurred at 6 = 90” and midway across the gap except 
for the high Rayleigh number, high radiation cases. In 
these cases, when Pl= 0.01, Ra = 6 x 105, R = 1.2, 
r = 1.0, E = 1.0, and rl = 1 or 2, the maximum stream 
function occurred at 85”, indicating a downward 
movement ofthe centre of the eddy. As noted by ref. [S], 
this is a characteristic of low-Prandtl-number fluids. It 
is known from ref. [16] and [21] that radiation reduces 
the effective Prandtl number of fluids and in the thick 
gas range the reduction is by a factor of [1+(41/3Pl)]. 
Another consequence of this reduction in effective 
Prandtl number is manifest in the streamline patterns 
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FIG. 2. Radiative effects on convective heat transfer. 

(not shown here for brevity) which indicate that the heat 
transport is dominated by conduction. 

The velocity plots are shown in Figs. 3-6 and the 
trends are consistent with those presented in ref. [4]. 
The tangential velocity plots exhibit sinusoidal-type 
behaviour. On the upper half of the annulus, the 
amplitude of the positive part of the tangential velocity 
sinusoid is less than the amplitude of the negative part 
and the reverse is the case on the bottom half. For the 
case of no radiation and Ra = 6 x 105, R = 1.2, the 
crossover point is at 6 = 100”. However, for the same 
Rayleigh number and radius ratio but with PI = 0.01, 
z = 1.0, q = 1, the crossover point is at 0 = 65” while for 
PI = 1.0, z = 10.0, q = 1, the crossover point is at 
0 = 85”. Hence radiation does reduce this crossover 
angle. The radial velocity plots for their part exhibit a 
maximum or a minimum depending on the angle. The 
radial velocity is positive and has a maximum on the 
upper half while it is negative and so has a minimum on 
the bottom half. The minimum values occurred around 
0 = 10” and maximum values occurred around 
0 = 170”. The higher of the absolute values of the 
maximum and minimum, as well as location are shown 
also in Table 1. Powe et al. [4] observed secondary 
flows at the top of the cylinder for a Rayleigh number of 
4.5 x lo5 and radius ratio of 1.2. In this study, even at a 
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higher value of Rayleigh number, 6 x 105, and the 
same radius ratio there was no evidence of the presence 
of secondary flow. 

For the numerical tests carried out, the maximum 
value of the ratio of tangential radiative flux to radial 
radiative flux is 3.5% occurring at an angular position 
of 85” for the cases where PI = 0.01. Since this 
percentage is small, the plots for qe/qR are not presented, 
however, it is expected that the ratio will increase for 
higher values of R and Ra. 

The temperature curves give a fair insight into the 
behaviour of the convective Nusselt number because 
this quantity, as defined, is proportional to the 
temperature gradient at the boundaries. Typical 
temperature plots are given in Figs. 7 and 8 
representing temperature profiles for angular positions 
of 30” and 120”. Figure 7 shows the effects of the Planck 
number and optical thickness, while Fig. 8 shows the 
effects of the degree of nongrayness of the fluid and the 
boundary surface emissivity. Increasing radiation by 
decreasing PI, increasing r, or increasing 4, will decrease 
the temperature gradient on the inner boundary while 

increasing the temperature gradient on the outer 
boundary. Decreasing boundary emissivity produces 
the opposite effect. These figures also indicate that 
radiation tends to smooth the temperature gradient of 
the bulk of the fluid hence reducing the effective 
buoyancy forces. This results in a decrease of the fluid 
motion which is due to buoyancy. 
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TRANSFERT THERMIQUE DANS UN ESPACE ANNULAIRE HORIZONTAL EN 
PRESENCE DE RAYONNEMENT THERMIQUE ET DE GRAVITE 

R&&-On ktudie analytiquement le transfert thermique dans un fluide de Boussinesq non gris, absorbant et 
emettant B I’inttrieur d’un espace annulaire entre deux cylindres concentriques, horizontaux, isothermes et 
infiniment longs. On emploie I’approximation de Milne-Eddington pour exprimer le transfert radiatif 
bidimensionnel en incluant le rayonnement radial et tengentiel. Les r&hats montrent que la d6croissance. du 
nombre de Planck, l’accroissement du degrk de non grisaille du fluide ou l’augmentation de 1Bpaisseur optique, 
accroit le transfert thermique total et rbduit I’intensit6 de I’bcoulement nature1 induit et les vitesses. Une 
dkcroissance de l’tmissivitk des frontibes produit l’effet inverse. Parce que le rayonnement d6croit le nombre 
de Prandtl effectif d’un fluide, I’augmentationdu rayonnement provoque un mouvement descendant du centre 

du tourbillon form6 dans le case des fluides a nombre de Prandtl moyen comme l’air. 

WARMEUBERTRAGUNG IN EINEM HORIZONTALEN RINGRAUM DURCH 
NATORLICHE KONVEKTION UND STRAHLUNG 

Zusammenfassung-Der Wiirmeiibergang im Ringraum zwischen zwei unendlich langen, horizontalen 
Zylindern mit einheitlicher Temperatur wird analytisch untersucht. Der Ringraum ist mit einem nichtgrauen 
(beziiglich Absorption und Emission) Boussinesq-Fluid gefiillt. Urn die zweidimensionale 
Wzrmeiibertragung durch Strahlung, radial und tangential, auszudriicken, wird die Milne-Eddington- 
NIherung verwendet. Die Ergebnisse zeigen, dai.3 mit abnehmender Planck-Zahl, zunehmender Transparenz 
des Fluids oder zunehmender opt&her Schichtdicke der Wirmeiibergang besser und die Intensitiit der 
Konvektionsstramungen gering& werden. Verringerte EmissivitIt der-Obkrfl%hen hat den gegenteiligen 
Effekt. Da die Strahlung die effektive Prandtl-Zahl des Fluids verringert, bewirkt eine Zunahme der Strahlung 
eine abwlrts gerichtete Bewegung der Mitte von Wirbeln, wie sie bei Fluiden mit mittlerer Prandtl-Zahl, z. B. 

Luft, gebildet werden. 
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TEfUIOfIEPEHOC BHYTPki I-OPW30HTAJIbHOl-0 KOJIbqEBOrO KAHAJIA C Y4ETOM 
TElXIOBOrO M3.JIY9EHkiII A I-lOflbEMHOfi CRJIbI 

AHHoTaqnm-AHaneTHYeCKH AsygaeTcrr TennonepeHoc B IIOrnOLUaloIUeii H Lf3nyYaKWeii HeCepOii CpCAe 

6yCCWieCKa B KOJIbUeBOM 3a3Ope AByX 6ecKoHewo AJIHHHblX TOpU30HTanbHbIX KOHIteHTpWieCKliX 

AHnlrHApOB. an5, OnUCaHHR AByMepHOrO paABaUHOHHOr0 IlepeHOCa C yWTOM paAHanbHOii U TaHTeH- 

LWiaJIbHOii COCTaBnIIIIOIAUX Fi3JIyWHtin IIpkiMeHReTCSI nprx6nnuxesue h’hinHa-%AHHrTOHa. Pe3ynbTaTbI 

nOKa3bIBaK)T, ‘IT0 yMeHb”IeHHe ‘IBCna npaHATn,I, yBenW,eHHe CTeIleHH HEepOCTH CpeAbI WI‘, BO3paCTa- 

HWe OnTWECKOii TOn”,PHbI yBWIWi&IBaIOT CyMMapHbIi-4 TUInOIIepeHOC U yMeHbLUaloT BHTeHCIlBHOCTb 

Te’IeHAII, BbI3BaHHOTO IIOAbCMHOii CWIO& W CKOpOCTb. YMeHbLUeHHe H3nyqaTenbHOii CIIOCO6HOCTki 

rpaHllUb1 AaeT 06paTHbIji 3t,@eKT. nOCKOnbKy Pi3nyWHHe yMeHbUIaeT 3@eKTHBHOe YUCJIO npaHATnZ4 

XWAKOCTA, yCEineHE!e 83ny’IeHUR IIpHBOAHT K HaIIpaBJIeHHOMy BHH3 ABH)KeHUIO AeHTpa BSiXpK, o6paso- 


